Large Margin Multi-Task Metric Learning
نویسندگان
چکیده
Multi-task learning (MTL) improves the prediction performance on multiple, different but related, learning problems through shared parameters or representations. One of the most prominent multi-task learning algorithms is an extension to support vector machines (svm) by Evgeniou et al. [15]. Although very elegant, multi-task svm is inherently restricted by the fact that support vector machines require each class to be addressed explicitly with its own weight vector which, in a multi-task setting, requires the different learning tasks to share the same set of classes. This paper proposes an alternative formulation for multi-task learning by extending the recently published large margin nearest neighbor (lmnn) algorithm to the MTL paradigm. Instead of relying on separating hyperplanes, its decision function is based on the nearest neighbor rule which inherently extends to many classes and becomes a natural fit for multi-task learning. We evaluate the resulting multi-task lmnn on real-world insurance data and speech classification problems and show that it consistently outperforms single-task kNN under several metrics and state-of-the-art MTL classifiers.
منابع مشابه
Multi-Task Low-Rank Metric Learning Based on Common Subspace
Multi-task learning, referring to the joint training of multiple problems, can usually lead to better performance by exploiting the shared information across all the problems. On the other hand, metric learning, an important research topic, is however often studied in the traditional single task setting. Targeting this problem, in this paper, we propose a novel multi-task metric learning framew...
متن کاملLocal Large-Margin Multi-Metric Learning for Face and Kinship Verification
Metric learning has attracted wide attention in face and kinship verification and a number of such algorithms have been presented over the past few years. However, most existing metric learning methods learn only one Mahalanobis distance metric from a single feature representation for each face image and cannot make use of multiple feature representations directly. In many face-related tasks, w...
متن کاملLarge Margin Metric Learning for Multi-Label Prediction
Canonical correlation analysis (CCA) and maximum margin output coding (MMOC) methods have shown promising results for multi-label prediction, where each instance is associated with multiple labels. However, these methods require an expensive decoding procedure to recover the multiple labels of each testing instance. The testing complexity becomes unacceptable when there are many labels. To avoi...
متن کاملMahalanobis Distance Learning for Person Re-identification
Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning...
متن کاملConvergence of Multi-pass Large Margin Nearest Neighbor Metric Learning
Large margin nearest neighbor classification (LMNN) is a popular technique to learn a metric that improves the accuracy of a simple knearest neighbor classifier via a convex optimization scheme. However, the optimization problem is convex only under the assumption that the nearest neighbors within classes remain constant. In this contribution we show that an iterated LMNN scheme (multi-pass LMN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010